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Abstract

Airfoil contour shape optimization is a fundamental part
in the field of aerodynamic design. In this project, the
optimized airfoil contours are obtained by conducting ge-
netic algorithm, using a pre-trained convolutional neural
network (CNN) as the fitness function evaluating airfoil’s
lift-to-drag ratio (CL/Cd). Based on the raw coordinates
data from UIUC airfoil dataset, cubic interpolation and a
method of Bézier curve fitting are implemented under cer-
tain geometric constraints to generate smooth airfoil con-
tour curve. Then a method of gradient-free local search is
used to speed up the optimizing process and a certain num-
ber of airfoil individuals are chosen to reproduce new con-
tours for the coming generations [3]. After trying optimiz-
ing airfoils with genetic algorithm, the method of simulated
annealing is also used to improve individual’s CL/Cd. Re-
sults show that the performance of airfoil is averagely im-
proved by 3.8%; specially in the case of genetic algorithm,
we found that contributed by pre-trained CNN and local
search, the general process of optimization is accelerated
by approximately 33%.

KEYWORDS: Airfoil optimization, CNN, lift-to-drag ra-
tio, derivative-free algorithms.

1. Introduction
Airfoil optimization is an important part of aerodynamic

design, increasingly drawing lots of attention in the field of
aeronautical engineering. Many researchers have worked
on several methods that can optimize this special 2D ge-
ometric shape to reach the aerodynamic performance that
they desire. Among all the methods, the derivative-free al-
gorithms are the most popular ones that are known as their
high computation efficiency. The way to conduct these iter-

ative methods can be easily achieved by high performance
computer and nice structured programs [3].

In order to fix attentions to certain points, two concrete
algorithms - genetic algorithm and simulated annealing al-
gorithm - are chosen to be implemented in this project. With
pre-trained convolutional neural network (CNN) as eval-
uation function, each airfoil individual’s lift-to-drag ratio
(CL/Cd) is calculated and taken as representative of corre-
sponding aerodynamic property (shown as Figure 1). In this
project, different algorithms are proved to work better in
different situations, and with proper parameters and initial
definitions, improvement can be observed quite apparently.

Figure 1: Airfoil’s contour - evaluation function

To design applicable airfoil contours, several geometric
constraints are necessary to be applied so that optimization
can be directed to a reasonable domain. In this project,
apart from normalization and contour’s first and second or-
der continuity (except two points at the leading and trail-
ing ends), all airfoils are smoothed to different correspond-
ing Bézier curves, and the leading edge of the airfoil are
further enforced to be convex. These constraints can help
optimization process yield better results and save optimiza-
tion time from unnecessarily generating bad airfoil contour
shapes. What’s more, using CNN as evaluation function,
as well as combining algorithms with non-gradient local
search method, is also proved to be a good way of shorten-
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ing iteration time. More algorithm implementation details
will be revealed and explained in this project report.

This project is derived from another project finished by
Haolin et al concerning training CNN for predicting air-
foil’s CL/Cd. Both these two projects are on the basis
of Xfoil, an aerodynamic numerical analysis software used
to generate data groundtruth. To further remove confu-
sion related to the situation this project is truly studying,
the Reynolds number is set to a constant of 400, 000 and
the Mach number is set to 0.0, referring to low speed, in-
compressible airflow. And to make the aerodynamic perfor-
mance be only the function of airfoil’s shape, the angle of
attack is fixed at 0. The situation fits for the air-drone with
low running speed. Without special notation, all the lift-to-
drag ratios, as well as all airfoil individuals, are calculated
and optimized under this special case.

2. Related Work
Among the approaches that try to solve airfoil optimiza-

tion problems, Gardner and Selig [3] find optimal airfoil
shapes by utilizing a genetic algorithm through manipula-
tion of the velocity distribution. The airfoil geometries used
in their approach are generated by an inverse method from
velocity distribution parameters, and Xfoil is used to deter-
mine fitness values especially for symmetric airfoil individ-
uals. Hacioglu and Ozkol [1] introduce vibrational genetic
algorithm and its implementation to inverse airfoil design.
The vibration mutation and vibration crossover are used in
their approach. The research shows a good results in pass-
ing over local optimums and making the convergence faster.
Zhao and Wang et al [2] optimize the suction control for air-
foil design using multi-island genetic algorithm (MIGA).
The optimal suction location on the upper airfoil surface
is found through minimize both the airfoil drag and suc-
tion requirement. Thier results show a better performance
of MIGA over traditional GA in maintaining population di-
versity and an overall higher calculation speed.

Similar with implementations of genetic algorithm in
plane airfoil design, researches show promising perfor-
mances in wind turbine airfoil optimization problems.
Huque and Zemmouri et al [6] perform multi-objective de-
sign optimization using Elitist Non-dominated Sorting Ge-
netic Algorithm (NSGA-II). Pareto optimal set of six dif-
ferent 2D airfoil profiles are generated by NSGA and each
Pareto optimal solution represents a different compromise
between design objectives. Ram et al [5] develop a multi-
objective genetic algorithm to optimize the tip region of tur-
bine airfoil blades in regard to roughness insensitivity. Sim-
ilar to Gardner and Selig’s approach, Orman and Durmu
[4] perform a study to find the best airfoil representation
scheme which gives the best lift to drag ratio in a large de-
sign space for the ideal aerodynamic design optimization.
From next section, the modified genetic algorithm used in

Figure 2: Flowchart of genetic algorithm

our optimization project is introduced.

3. Genetic Algorithm

3.1. Introduction

Genetic algorithm (GA) is one of the most commonly
studied evolutionary algorithms (EA) in the field of op-
timization and operation research. Inspired by Darwin’s
theory of evolution, genetic algorithm can generates high-
quality optimization solutions by iteratively conducting se-
lection, crossover and mutation processes. With different
goals, genetic algorithms can be implemented in different
ways and structures. In this project, the control points of
airfoil’s contour curve (fitted Bézier curve) are chosen to be
variables, and the optimization process will be conducted
under certain geometric constraints. Structure of genetic al-
gorithm is shown as Figure 2.

3.2. Implementation

The overall process of implementation is: First, GA will
generate initial population (first batch parents) by Bézier
curve fitting, which will help smooth the contour curve; sec-
ondly, GA needs to make sure that all contours are subjected
to geometric constraints; third, certain crossover and muta-
tion, which are also called reproduction, will be conducted
among population; after reproduction, the fitness value of
each airfoil individual shall be calculated, and local search
algorithm will also be implemented afterwards; with evalu-
ated fitness values, certain number of airfoils will be chosen
for next generation. This process will repeat until the al-
gorithm reaches its stopping criterion. Each part will be
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discussed as follows.

3.2.1 Initial population

Based on the UIUC online airfoil dataset, the raw coor-
dinate data of airfoils is used as data of control points for
Bézier curve fitting. Since the airfoils from online dataset
have already been optimized, they cannot be directly used
as initial population; instead, new airfoil contours generated
from raw dataset can be regarded as new airfoils and can be
utilized as initial parents. The raw data is firstly cubic inter-
polated by 800 points, with leading edge denser and trailing
edge sparser (shown as Figure 3); then 200 points would be
picked out among them as control points for Bézier curve
fitting.

Figure 3: Cubic interpolation

In order to make genetic algorithm work efficiently, the
size of population is restricted to 100 airfoil individuals, and
all the curve fitted from raw dataset is controlled to 100th
order Bézier curve.

3.2.2 Geometric constraints

As an airfoil, curves on both upside and downside of
contour should be smooth and continuous, which refers to
curve’s first and second order continuity. Bézier curve fit-
ting will be implemented here to achieve smooth and con-
tinuous contour curve (shown as Figure 4). This constraint
can be removed at the points on leading and trailing ends of
the contour. In order to make the result derived from CNN
is more accurate, bias between dataset need to be removed.
Since the CNN is trained with dataset that seldom contains
airfoils with concave leading edge, the samples put into the
neural network shall also be without concave leading edge.
Similarly, since CNN only get inputs from image with res-
olution of 128 × 128, the airfoil should be normalized to a
certain reasonable range. Therefore, the airfoil individuals
should be subjected to ”convex leading edge” constraint and
should lie in the range of [0, 1] along x-axis.

3.2.3 Reproduction

There are two main parts of reproduction, crossover and
mutation. For the crossover, this project chooses the strat-

Figure 4: Bézier curve fitting in genetic algorithm

Figure 5: Structure of CNN

egy called ”binary swapping”, which means only upside or
downside of the contour will be swapped between airfoils.
This crossover strategy can generally ensure the continuity
at the leading and trailing points (and also avoid generating
weird airfoil shape). The crossover rate is set to 0.5. For
mutation, it will be restricted within a range controlled by
a parameter called ”mutation ratio”, meaning the mutation
range will be equal to it multiplied by the maximum range
along the axis. The ratio is equally set to 0.001 for both x
and y axis, and the overall mutating rate is set to 0.01.

3.2.4 Evaluation

This project takes pre-trained CNN as fitness function,
which means the calculated CL/Cd from CNN will be con-
sidered fitness value. The structure of CNN is shwon as Fig-
ure 5. After each airfoil is evaluated with an fitness value,
all of these values will be put into softmax function in order
for the better selection in next step.

3.2.5 Selection

After obtaining fitness vector, the same number of in-
dividuals will be selected with probability related to their
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fitness values. In this project, the strategy of deterministic
tournament selection is used, and the tournament size is set
to 20.

3.2.6 Local Search

In order to reduce the iterating time for optimization,
the method of gradient-free local search is implemented.
Before conducting reproduction in the next round, certain
amount of airfoils will be randomly picked out from current
population pool; setting these individuals as starting points,
the nelder mead algorithm will then be conducted to find
the nearby local maximum on fitness function. After the
local maximum is found or the maximum iteration number
is reached, the result individual and corresponding fitness
value will replace the individual at starting point, and then
be returned to the original population pool. The process of
implementing local search algorithm is shown as Figure 6.

Figure 6: Local search - Nelder-Mead algorithm

3.2.7 Criterion

To end the algorithm, there are several thresholds: if the
results show convergence in 5 continuous generations, the
algorithm will automatically stop; or in a more usual case, if
the number of iterations has reached the maximum number
of 150 generations, the algorithm will be forced to abort.
During the optimization process, the global best candidate
and its corresponding lift-to-drag ratio shall be recorded and
maintained until the end of algorithm. No matter how the
optimization process ends, the final global best contour will
be taken as the final optimization result.

4. Simulated Annealing
4.1. Introduction

Simulated annealing (SA) is a probabilistic technique
for approximating the global optimum of a given function.
Specifically, it is a metaheuristic to approximate global op-
timization in a large search space for an optimization prob-
lem. The name and inspiration come from annealing in met-
allurgy, a technique involving heating and controlled cool-
ing of a material to increase the size of its crystals and re-

Figure 7: Flowchart of simulated annealing algorithm

duce their defects. This notion of slow cooling implemented
in the simulated annealing algorithm is interpreted as a slow
decrease in the probability of accepting worse solutions as
the solution space is explored. Accepting worse solutions is
a fundamental property of metaheuristics because it allows
for a more extensive search for the global optimal solution.

In general, the simulated annealing algorithms work as
follows. At each time step, the algorithm randomly selects
a solution close to the current one, measures its quality, and
then decides to move to it or to stay with the current solu-
tion based on either one of two probabilities between which
it chooses on the basis of the fact that the new solution is
better or worse than the current one. During the search, the
temperature is progressively decreased from an initial posi-
tive value to zero, and make the probability of moving to a
worse new solution progressively change towards zero.

4.2. Implementation

4.2.1 Modeling

Figure 8: Modeling Airfoil with 2 Cubic Bézier Curves

To simplify the model of airfoil, two cubic Bézier curves
are used to represent the shape of the airfoil. Both curves
start from (0, 0) and end (1, 0). This is requirement of
XFOIL which is addressed in next section. A reasonable
constraint is to make two curves G1 continuous at (0, 0).
Thus the two control points (xu1, yu1), (xd1, yd1) lie on the
same line with slope k. G1 continuity only requires the two
tangent vector have the same direction, but they do not have
to share the same length as shown in Figure 8
The negative null form of the optimization problem is
Maximize f(p), p = [k, xu1, xd1, xu2, yu2, xd2, yd2]

T ,
subject to p∈R7. f(p) refers to a function that takes the
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decision variable p and return the lift drag ratio.

4.2.2 Neighbor

The neighbors are generated using a randomized
method. Since each element in p has different meaning, a
learning rate vector l is introduced to customized the change
of elements in p.

pnew = p + (rand()− 0.5) · l

After generating the new decision variable pnew, we eval-
uate the lift drag ratio of the old and new airfoil and get y
and ynew. In simulated annealing, the fact that accepting
bad solution by chance helps lead to the global optima.

Prob = rand()− exp(
ynew − y

T
)

If the value of the equation above is greater than 0, a bad
solution is accepted in this iteration. After each iteration,
the temperature T is decreased by 10%. So the chance of
accepting bad solution is getting smaller.

4.2.3 Fitness

XFOIL is used to calculate the lift drag ratio given the
decision variable p. XFOIL is an interactive program for the
design and analysis of subsonic isolated airfoils. Given the
coordinates specifying the shape of a 2D airfoil, Reynolds
and Mach numbers, XFOIL can calculate the pressure dis-
tribution on the airfoil and hence lift and drag characteris-
tics. XFOIL requires that the coordinates of the airfoil to be
in the range of [0, 1]. The leading edge of the airfoil lies at
(0, 0) and the trailing edge lies at (1, 0).

XFOIL combines a panel method and an integral bound-
ary layer formulation for the analysis of the potential flow
around airfoil. Overall, it gives more accurate and reliable
results than neural network. However, XFOIL solver might
have non-convergence issue, on the contrary, the neural net-
work always gives a result for any given airfoils. Addition-
ally, a maximum number of iterations has to be specified
when using XFOIL. This limitation is also a factor that can
hinder the speed and accuracy of the solution.

5. Results and Discussion
5.1. Genetic algorithm

Figure 9a shows the results of genetic algorithm opti-
mization, each curve of which represents a optimization
process from initial best individual to the global best in-
dividual. The curves indicate that airfoil’s CL/Cd can be
averagely improved by 3.84%. Also, due to local search al-
gorithm, most of the optimization processes reached their
convergence with 100 generations.

(a) CL/Cd vs. Generations -
Genetic algorithm

(b) Curves with and without
local search

Figure 9: Result curves of Genetic Algorithm

The difference between the initial best airfoil and global
best airfoil should not be very large, since the optimization
should not change the original airfoil design too much. Fig-
ure 10 shows the comparison of initial and optimized airfoil
contour curves.

(a) Improved 6.22% (b) Improved 5.15%

(c) Improved 6.74% (d) Improved 1.78%

Figure 10: Initial & Optimized airfoil contours

To study the actual contribution of local search, an exper-
iment of conducting optimization process with and without
Nelder-Mead algorithm on the same population is tested.
The size of testing population is limited to 50 airfoil in-
dividuals. The result in Figure 9b shows that the overall
iterating time for optimization process is reduced by 33%.

5.2. Simulated annealing

Figure 11 shows the change of lift drag ratio as the num-
ber of iterations grows. The vertical axis is the global max-
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Figure 11: CL/Cd on Simulated Annealing Algorithm

imum lift drag ratio that appeared so far, and the horizontal
axis is the number of iterations. Due to the feature of simu-
lated annealing, it is not guaranteed that each iteration will
give better lift drag ratio. Many parts of the curve remains
the same lift drag ratio because no new maximum appears
in these iterations.

(a) Improved 6.88% (b) Improved 1.99%

(c) Improved 1.52% (d) Improved 4.78%

Figure 12: Airfoil L/D Improvement

Figure 12 shows the comparison between the old airfoil
and the refined airfoil.

6. Conclusion
This project shows the feasibility of using neural net-

work and derivative-free algorithms to optimize the airfoil’s
contour and improve their aerodynamic performance. Ge-
netic algorithm and simulated annealing algorithm are both
concretely implemented to optimize this special 2D geome-
try and successfully achieve an average of 3.8% improve-
ment in terms of CL/Cd. This project uses pre-trained
CNN as evaluation function, which slightly improves the
optimizing efficiency. Also, this project successfully uses
Nelder-Mead algorithm as local search method and com-
bines it with the main genetic algorithm to speed up the
optimization process. Result shows that the time spent in

optimization iteration has been saved by approximate 33%.
With comparison between genetic algorithm and simu-

lated annealing, the conclusion can be easily got that genetic
algorithm is more proper for finding and generating better
airfoil individuals among a population pool, while simu-
lated annealing is better for changing and optimizing on a
basis of a single individual. Both these two non-gradient
algorithms can achieve considerably wonderful results on
airfoil optimization.
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