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Abstract

The method of convolutional neural network (CNN) is
capable of image processing, which is widely used nowa-
days for aerodynamic meta-modeling task. Based on the
dataset with adequate quantity, the aerodynamic property of
airfoil can be predicted by using CNN. The primary objec-
tive of this paper is using CNN to predict the lift-to-drag ra-
tio of airfoils with different angles of attack (o). The method
of computational fluid dynamics (CFD) is also conducted in
this paper to calculate the lift-to-drag ratio of all the air-
foils. Basically, the efficiency and accuracy of these two
methods are compared and discussed in this paper, and it
is shown that the method of CNN can maintain a relatively
competitive level of accuracy and has far better efficiency
than analytical method and CFD method.

KEYWORDS: Convolutional Neural Network (CNN),
Lift-to-drat Ratio, CFD, Airfoil.

1. Introduction

In the field of aerodynamics, most of the problems are
traditionally handled by solving the corresponding partial
differential equations (PDE). However, some problems, like
flow fields prediction, are usually high dimensional, highly
non-linear and multi-scale, which can be truly difficult to
find an analytical solution or find ways to get a totally rea-
sonable explanation. In a common situation, these hard-to-
solve problems are handled by using numerical methods,
which can help get numerical solutions and make an ap-
proximate to analytical solution. Nonetheless, numerical
methods are usually time-consuming and highly possible to
be diverged during the process of calculation.

The method of machine learning is widely used nowa-
days in different fields to solve problems of all kinds. With
the development of computer science and the growing size
of dataset, many efficient ways of calculation have merged
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and considerably amount of problems, including problems
related to aerodynamics, has been addressed by using spe-
cific machine learning algorithms [4} [1]. The method of
multi-layer perceptron (MLP) are commonly used to ad-
dress the problems under framework of classification and
regression, which is also effective in the area of aerodynam-
ics. Rai et al implements MLP to achieve two-dimensional
aerodynamic design, which should be a really hard task if
worked in traditional ways [5]. Using convolutional neu-
ral network (CNN) recently is another common way to ex-
tract features of images, which makes contributions in lots
of academic areas. Guo et al uses CNN to succesfully ap-
proximate the properties of laminar flow and make several
predictions of it[3].
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Figure 1: Method of CNN

One of the most important merits of the machine learn-
ing method is its high working efficiency, therefore many
engineering problems, especially those related to the nu-
merical calculating (which could be extremely time con-
suming), can be solved in a relatively shorter time when cer-
tain and proper machine learning methods are implemented.
With the development of machine learning itself, difference
in calculating efficiency between different machine learn-
ing methods also turns out gradually and become more and
more important. Rai et al implement different neural net-
works, including MLP and CNN, to achieve designment of
turbomachinery airfoils simultaneously, and they find out
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Figure 2: The lift-to-drag ratio of an airfoil (%)

that the method of CNN could be much faster than the
method of MLP [5]. Since the input of CNN is generally
figures and images, more effective information can thus be
contained, and it is reasonable for CNN to achieve higher
information exchanging.

With respect to an airfoil, which should be the cross-
section of the wing of airplane, one of the most impor-
tant tasks is to get its aerodynamic properties. One of the
most crucial parameters of an airfoil is its lift-to-drag ratio
(%). The %Z basically refers to the ratio of resultant lift
force over drag, which is shown in Figure[2| The z—z rep-
resents the working efficiency of an airfoil and is extremely
valuable to airfoils optimization. To calculate it, the vortex
panel method is frequently used to get the numerical solu-
tion. But with its low calculating efficiency, in many cases
this method is obviously time consuming. Therefore, based
on the drawbacks of numerical methods and the advantages
of CNN, the method of CNN is implemented in this paper
to map airfoil shapes to the corresponding (‘;—3), and the an-
gle of attack (o), which decides the position of airfoil, is
considered in the work.

2. Related Work

Implementing neural network algorithm to the area of
airfoil property prediction is not a new topic among the
field of aerodynamic design and calculation. One and a half
decade ago, Suresh et al has used recurrent neural network
(RNN) to predict the lift coefficient of the airfoil [6]. In
their work, method of RNN is taken as a effective way to
solve highly non-linear problems; based on this high level
idea, considerably good are obtained and the model built
in their paper takes time and space complexity to some ex-
tent. Nonetheless, since the method of CNN is not devel-
oped then, the method that mapping input to the output of
lift coefficient takes some unnecessary complexity and rel-
atively more time is used to train the RNN model.

In recent years, more and more aerodynamic researchers
pay attention to the implementing of CNN on problems re-
lated to airfoil design and calculation. Yilmaz and Ger-
man implement CNN on predicting the pressure distribution

along the contour of the airfoil [2]. Under the framework
of classification, the pressure coefficient along the airfoil is
discretized and predicted. A number of accuracy is calcu-
lated in that paper and it shows that an accuracy of over 80
percents is achieved. But the structure of CNN used in their
work contains basically two convolutional layers, the fea-
tures extracted form which could be too less and may be
not effective to the learning effect of the model; moreover,
the input used only shows the contour of the airfoil, which
may not contain enough information and may cause relative
inaccuracy to the result they generate.

Based on these drawbacks, Yao et al successfully im-
plement CNN on calculating lift coefficient of airfoil [7].
The «, Reynolds number (Re) as well as Mach number
(Ma) are considered in their model and the input image
of fully-filled airfoil takes a resolution of 49 x 49. With
an input dataset of such size, accurate prediction model is
obtained and impressive predicting results are gotten from
this model. But because the resolution of the input figure is
relatively small, the increment of o can only be 2° so that
there can appear difference between figures of airfoils with
different angles of attack. Also, the model only takes the
lift coefficient into account, the effect of drag force or, ba-
sically i—j, is not considered. In our paper, we increase the
resolution to 128 x 128 to contain more information and
make the 1°« increment possible, and the lift-to-drag ratio
is also studied.

3. Data Processing
3.1. Image Generation

To find the relationship between lift-to-drag ratio and air-
foil shape through neural network, the first and critical step
is preparing input data with proper mathematical represen-
tation for training the neural network.

A dataset with quantity adequacy and type diversity is
required to make the neural model robust to be applied on
different airfoils. With this purpose we choose UIUC Air-
foil Data Site, which contains coordinates of nearly 1600
mainstream airfoils from NACA 4-digit series to Selig se-
ries, as our raw data.

There are several ways of processing the raw data. The
first way is to input the coordinate pairs into the network.
Thus input data is a 2N-element vector, in which N is
the number of coordinate pairs. However, this seemingly
straightforward method will result in problem when decid-
ing the number of neurons in the input layer since different
airfoil sample have slightly different number of coordinate
pairs. To address this nonuniformity problem in data size,
we transform the raw coordinate pairs into greyscale images
with the same size. For each airfoil sample, the raw (2, N)
coordinate matrix is firstly plotted as contour image of 128
pixels by 128 pixels. Notice that image size is set by (128,
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128) instead of the normally smaller size, such as (28, 28)
in MNIST dataset or (32, 32) in NIST36 dataset, since aero-
dynamic performance of airfoils is very sensitive to subtle
changes of its shape and it is of critical importance to main-
tain a decent resolution to keep prediction accuracy. How-
ever, it will be computational expensive and unnecessary to
make the contour size with resolution as high as (256, 256)
in ImageNet dataset since there are not many subtle details
information in the airfoil. Weighting over both accuracy and
computation, a image size of (128, 128) will be the best fit
for the application in airfoil data.

After plotting the contour of airfoils, the next step is to
fulfill the contour to bring more valuable learning materials
to the network instead of bringing in only few useful con-
tour pixels within large useless blank background pixels.
We apply opening method, which is an erosion-followed-
by-dilation morphology manipulation in computer vision,
to fill in the blank space within the contour.

To take into account the effect of angles of attack have
on the airfoil aerodynamic performance, the filled-in con-
tour image (which is based on initial zero attack angle) is
rotated with respect to the chord line from -5 to +19 with
an interval of 1 . Thus for each raw airfoil sample, we pro-
duce 25 images. After binarization and flattening, we stack
all the sample data together and form a (N, 162384) matrix
between 0 and 1, and this will be the input data of the neural
network model.

3.2. Ground Truth Calculation

Since the airfoil is only a 2D shape of the cross section
of the airplane’s wing, it will be hard to get results from
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Figure 4: Contours of Airfoils (i.e. No.201 - No.300)

experimental ways. To quickly get the ground truths of the
lift-to-drag ratio, certain CFD software is used to calculate
the corresponding parameters and save the results for future
use. In this paper, a software named xflr5 is implemented to
get the required results.

3.2.1 Import Airfoil Figures

Firstly, to use the data downloaded from UIUC Airfoil
Dataset, all the data files should be imported into the soft-
ware and generate corresponding figures of contours. Cer-
tain number of panels are set to ensure the convergence of
calculation. The image of contours is shown exactly as Fig-
ure 4l

With these contours, different results of < can be ob-
tained and the influence of « is considered automatlcally
Each converged result of ?:Z and its corresponding o will
be recorded and exported and regarded as one sample.

3.2.2 Calculate Lift-to-drag Ratio

By choosing the numerical method, the results of 2—2 can
be obtained from the software. An corresponding figure of
different group of the relationship between airfoil’s o and
L can be exported, which can generally be shwon as Figure

4. Methods
4.1. Theoretical Method

Traditionally, the problems of aerodynamics can possi-
bly be solved in analytical ways. In the airfoil calcula-
tion area, the partial differential equation of Navier-Stokes
Equation could be the main part of analytical method.

{ p(a” + (v-V)v) = =Vp+ uV3v + f, )
V-v=0,
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Figure 5: Plot of relations « vs. <&

Equation (1) is the special form of the Navier-
Stokes Equation based on the assumption of viscous in-
compressible flow. Considering the situation of convective
acceleration, the velocity of the flow may not merely the
function of time. In that case, the equation can further be
written as:
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where
- p: Density of the flow
- v: Velocity of the flow
- p: Viscosity
And considering the continuity:
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The above equations is the simplified form of Navier-
Stokes Equation based on the assumption of viscous in-
compressible flow. These equations are hardly to get an-
alytical solutions because the physics under this equation is
truly hard to figure out. Normally, getting an approximate
solution of this equation is much more feasible, but the pro-
cess is still time-consuming and extremely inconvenient.

4.2, Computational Fluid Dynamics (CFD Method)

Due to the inconvenience of getting analytical solution,
numerical method is therefore emerged. Numerical meth-
ods of solving problems related to aerodynamics include
vortex panel method, vortex-lattice method, etc. Calcu-
lating parameters of airfoil can be solved by vortex panel
method, which is shown as Figure@

(a) Panels of airfoil and
flow

(b) Consistency on the
trailing edge

Figure 6: Vortex Panel Method

Vortex panel method basically focus on getting numeri-



cal result that can approximate the analytical solution. This
mainly refers to solving the following series of equations:

U=Uyx +u,
" =, + P, “4)
V2@ =0,

where the equation of ®* should be:

1 1 1
P = — V(D — D) — (@ — B,V
= [TV( ) —( )VJndS

(%)
1 1 1
+ — [VCI) — @V] ndS
A Jop 5. LT T
Further derivation should be:
1 1
o :—// ,un~V(>dS
47T Sp+Sw T (6)

i// U(l)dS-I-CI)OO
4 S r

Further derivation should be:

2
— Dre 2 0]
Cp_p2pf_1_<Q> _ 267 (7)
pvref/2 Uref Urep? Ot

where theC), refers to the pressure coefficient; getting the
distribution of C,, along the airfoil can help get the final
result of the i—;

Although the numerical method makes the problem
solving feasible in certain situations, it is usually time-
consuming and thus may not have a generally high level
of calculating efficiency. It becomes a influential drawback
and therefore in many cases the result of airfoil’s property
cannot be gotten immediately after the boundary condition
and flow’s properties are obtained.

4.3. Convolution Neural Network

For the regression problem in this case, in which the out-
put is continuous, neural network model acts like a black
box mapping airfoil images to their respective lift-to-drag
ratio values. It has been demonstrated mathematically that
any network with more than 2 layers can map any non-linear
functions. However, the prediction result will be distin-
guishably different in the real application due to the quality
of data, parameter tuning and other factors. Hence selecting
a proper and powerful network model is of critical impor-
tance.

Traditional Multi-Layer Perceptron (MLP) is not appro-
priate for processing airfoil images input since the num-
ber of parameters becomes extremely high for (128, 128)
resolution images and such fully-connected neural network
will easily fall into over-fitting. Compared with MLP, CNN
has demonstrated strong capability in image recognition
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Figure 7: Structure of CNN

and other vision applications[2]. CNNs feature extraction
method by convolution operation also makes it detect local
features better. It also has fewer parameters to learn be-
cause of parameters sharing mechanism. In this project, we
choose CNN as our model

The CNN architecture is composed of two parts: En-
coder, which extracts features, and Decoder, which learns
the features and outputs regression results.

The Encoder contains 4 convolutional layers. In each
convolutional layer, batch normalization, an optimization
technique, is applied to shift and scale the data from last
layer. [3]It has been shown that by batch normalizing neu-
ral networks can be trained faster and have higher accuracy.
Then features are extracted by applying kernels filtering the
image and obtained feature maps.

To reduce the amount of parameters we conduct max
pooling here to reduce the size of the feature maps to their
half. The last step is to pass the pooled result into ReLu
activation function to increase the non-linearity of the net-
work. The kernel size for each layer is reducing from 13 to
5 while the number is increasing from 10 to 80, so that the
kernel can extract subtler and higher-level representation of
the airfoil images.

The Decoder contains of 2 fully-connected layer. For
regression problem, we choose only 1 neuron to output the
final prediction result.

5. Experiment

A convolution neural network(CNN) is built to com-
pute/predict the lift-to-drag ratio. To prove our approach
is accurate and efficient, different metrics are used, such
as mean squared error (MSE), confusion matrix and time-
consumption table.

This paper took 1000 airfoil samples from 1550 airfoil
sample datasets that generated previously, then split them
into three parts: 70% training datasets, 20% validation
datasets and 10% testing datasets. The purpose of valida-
tion datasets is to compare the training loss and validation



loss during training time, so that we can fine-tune the pa-
rameters. The range of attack-angle is from -5 degree to
+20 degree, the increment is 0.25 degree, which generates
100 images for each airfoil sample. For the final experi-
ment, we chose 20578 images from 1000 airfoil samples,
transformed them into a matrix which the size is 20578 by
16384. And the label size is also 20578 by 1.

All the training and testing stages in this paper have been
completed by using the Pytorch package in GPU. Pytorch is
an open source software library originally developed by the
Facebook team for use in machine learning.

5.1. Fine-tuning Hyper-parameters
In the beginning, hyper-parameters are set as follows:

batch size = 50

- learning rate = le-3

- epoch =50

dropout = 0.5 (for each layer)

We discovered that the learning rate is considerably
large, which led to divergence of the loss or local minimum.
So, we tried different learning rates, found out that learning
rate of Se-5 fits our model best. Then we noticed the ac-
curacy is not high enough, which is related to the dropout
layers we used. By getting rid of all the dropout layers other
than the last FC layer, we yielded pretty good accuracy, and
the value between train loss and validation loss seemed rea-
sonable. Furthermore, we downsized the mini batch size to
32, to reach a higher accuracy. The final hyper-parameters
are showed below:

- batch size = 32

- learning rate = Se-5

- epoch =200

- dropout = 0.5 (for layer FC1)

6. Results and Discussion

After data pre-processing and CNN model building, the
training process (also the model’s learning process) is con-
ducted and several training results are obtained. The results
mainly focus on three aspects: training and validation loss,
confusion matrix, model’s accuracy and model’s efficiency.

6.1. Training and Validation Loss

Figure 8| shows the performance of our CNN model dur-
ing 200 epochs. The MSE loss of training datasets and vali-
dation datasets both converged after 50 epochs. Regardless
of the diversity in the number of adjustable parameters or
learning capabilities, they show similar learning trajectories
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Figure 8: Training and Validation Loss(MSE)

resulting in the overall boundary of the obtainable accuracy
for the lift-to-drag coefficient prediction. The training loss
1s 0.36484, and the validation loss is 0.06415 in the end.

6.2. Confusion Matrix
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Figure 9: Confusion matrices with different training epochs

Figure [9] represents the deviation between the ground
truth and prediction results from test datasets. The x-axis
is prediction results, the y-axis is the ground truths. If the
prediction output from our CNN model is accurate enough,



| Epoch | Variance |

5 114.075

10 94.098

30 73.335

50 59.085
100 54.955
150 52.819
200 48.174

Table 1: Variance of confusion matrix over epochs

the blue points will cluster along the diagonal line, meaning
that predicted values are closer to actual values. There is a
noticeable improvement from epoch 5 to epoch 200, which
proves our CNN model is sufficient enough.

We also used the principle component analysis (PCA)
to reconstruct the data in confusion matrix, reduce the di-
mension, compute the variance of confusion matrix. The
variance is showed in the table 2 below.

6.3. Prediction and Ground Truth Comparison (De-
normalized)
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Figure [T0] shows the comparison between prediction
and ground truth. Orange lines represent the ground truth
C1,/Cp of each airfoil sample in one angle calculated by
CFD. Blue lines represent our CNN model prediction re-
sults. X-axis is foil serial number, y-axis is lift-to-drag ra-
tio.

Figure[TT] gives us a closer look into one airfoil. We can

see that two plots almost overlap, which means our predic-
tion matches ground truth with high accuracy.
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Figure 11: Prediction and Truth Comparison (zoom in)

NUM. Time(s)
xflr5(s) Well-trained CNN(s)
10 30.95 0.034
30 91.16 0.051
50 181.72 0.071
100 277.54 0.118
200 836.21 0.224
300 1897.35 0.308

Figure 12: time consumption table
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Figure 13: Time consumption
6.4. Efficiency

For CFD method, the solver will traverse all samples and
compute multiple times until the results converge, so the
time-complexity is O(n?). In contrast, our CNN model af-
ter fine-tuning and training, will only traverse all samples

——xflr5
—=—CNN



once and output the results, which means the computing
time increase linearly, thus, the time-complexity is O(1).
When the size of testing samples is 300, the CNN method
is 5000 times faster than CFD method.

7. Conclusion

With the results ontained and shown above, several fol-
lowing conclusions can be drawn:

- The calculating efficiency of CNN is 5,000 times
higher than the calculating efficiency of CFD;

- The CNN we built can maintain a relative high level
of accuracy. Accuracy of CNN will increase with the
growth of epochs. The accuracy of CNN with 10
epochs is 62.68%, and the accuracy with 100 epochs
is 83.09%;

- With this trained high-accuracy CNN, airfoil optimiza-
tion can be achieved in the future;

- We revised the bad data in the UTUC Airfoil Dataset ,
and for each airfoil we generated filled airfoil figures
for each increment of angle of attack, which can bene-
fit researchers in the future.

In the future, based on the obtained trained CNN model,
the work of optimization of airfoil can be conducted and
further achieved.
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