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Abstract:  The property of actuation responding to external stimuli has been widely studied recently and been har-

nessed in the field of soft robotics. Liquid crystal elastomer (LCE) has gained more attention than other types of soft 

actuators due to its property of reversible transformation. To date, a large variety of fabrication approaches, including 

three-dimensional (3D) printing, have been implemented on LCE manufacturing, aiming to reduce the difficulty of 

physical prototyping and enhance the accessibility of deformation programming. However, seldom insights are given 

regarding the material behavior of the 3D printed LCE at specific light illuminations. In this project, we design and 

computationally study a light-responsive 3D printed soft arm with the honeycomb topology based on the material of 

LCE. Based on the morphing mechanism of heat-induced phase transition, we derive a theoretical model describing 

the relationship between the temperature, the nematic order and the strain based on the Landau free energy theory. At 

last, we systematically evaluate the performance of the designed soft arm from both numerical and theoretical per-

spectives. 

1. Introduction 

Smart actuation has gained advantages of environmental-re-

sponsive, autonomous triggering and simplified structure, 

making it an extremely popular research area in the field of 

soft robotics [1,2].  Specifically, shape memory materials like 

shape memory alloy (SMA) and shape memory polymers 

(SMP) are leveraged to establish the actuator system with a 

large variety of geometric patterns or design topologies [1,3]. 

However, with the weaknesses of high fabrication cost and 

one-time transformation, the functionality of these material 

designs is considerably limited. Liquid crystalline elastomer 

(LCE) not only enables the feature of reversible transfor-

mation (shown in Figure 1), but also reduces the fabrication 

difficulty of additive manufacturing by its time-variant vis-

cosity. Thus, three-dimensional (3D) printing LCE is tremen-

dously developed in the aspects of medical devices, biomi-

metic actuators, and even untethered robotics [1,4,5].  

A successful actuator system establishment should not only 

leverage the functionality of actuatable materials, but also 

rely on its topological design. Among a large variety of geo-

metric structures, the honeycomb pattern is capable of mini-

mizing structure’s weight-to-stiffness ratio and enhancing 

structure’s overall in-plane mechanical properties (e.g. stabil-

ity, compressive stiffness, etc.) [6]. In addition, the honey-

comb structure enlarges the material’s deformation range 

through cumulating small local deformations and overall 

structural transforming (shown in Figure 2a), making it an 

optimal topology candidate for LCE assembly. However, the 

limited dimension of 3D printed structures and the difficulty 

of accurate pointwise triggering make the application of 3D 

printing hexagonal LCE impractical. Therefore, to verify the 

idea and provide more insights into the material design ahead 

of the experimental implementation, more work should be 

done regarding the theoretical analysis and computational 

modeling of the honeycomb LCE’s mechanical behaviors. 

 

Fig. 1 Heat-induced phase transition [4], where the nematic order parame-

terizes the degree of mesogen alignment. 

 

Fig. 2 (a) The simulation result of the structural deformation of a honeycomb 

pneumatic network [7]. (b) The inspired light responsive soft arm design 

based on the honeycomb topology.  

In this project, we aim to design and computationally study a 

light responsive LCE soft arm with the honeycomb topology 

(shown in Figure 2b). We mainly focus on the theoretical 

model establishment of the LCE mechanical behavior and the 

finite element modeling of the honeycomb topology. We di-
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vide our project into three tasks: (1) Establishing the mathe-

matical relationship between the temperature, the nematic or-

der and the shrinking strain; (2) Conducting the stationary 

simulation based on several assumptions and simplifications; 

(3) Evaluating the soft arm’s performance from different per-

spectives.  

2. Methodology 

2.1 Assumptions & Simplifications 

To simplify the model, we make the following assumptions:  

1. We assume the material is linear elastic. The nonlin-

ear elastic behavior and viscoelastic behavior will 

not be considered in this project. 

2. We assume the perfect connection between nearby 

hexagon edges. The gap between nearby printing 

layers and nearby hexagons will also be ignored.  

3. We assume the loss during the light-to-heat energy 

conversion is ignorable. We merely consider the en-

ergy successfully converted to the heat from light.  

4. We assume 100% light transparency of the LCE, 

which means there will be no light decaying and no 

temperature gradient along with the thickness direc-

tion.  

5. We assume the heat transmission process and all the 

material properties are time independent.  

 

2.2 Theoretical Modeling 

2.2.1 Nematic Order Parameter 

The deformation of LCE is mainly attributed to the change of 

mesogen alignment. With the increase of temperature, the 

alignment will change from perfectly nematic to nematic and 

eventually switch to the isotropic phase (Figure 3). To nu-

merically describe the tendency of alignment, we introduce 

the nematic order parameter Q, which is an average of the 

second-order Legendre polynomial, 〈𝑃2(𝑐𝑜𝑠𝜃)〉 =

〈
3

2
 𝑐𝑜𝑠2𝜃 −

1

2
〉 [8] . The nematic order parameter can be ex-

perimentally measured by room temperature X-Ray Diffrac-

tion (XRD), in which the wide-angle X-ray scattering peak 

reflects the orientation of the mesophase [9]. 

 

Fig. 3 The alignment of mesogen in LCE. The black arrow indicates the ne-

matic order orientation. 𝜃 is the angle between nematic order orientation and 

the principal axis of a certain mesogen. 

In the actual situation, the nematic order parameter is tenso-

rial in character, and its tensor form, 𝑸, can be extended from 

the scalar form Q. If unit vector n= (0,0,1) represents the ne-

matic orientation (along z-direction here), unit vector u rep-

resents the mesogen principal axis, and (𝜃, 𝜑) represents the 

azimuthal angle, the projection of u should be 𝑢𝑥 =
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑢𝑦 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, 𝑎𝑛𝑑 𝑢𝑧 = 𝑐𝑜𝑠𝜃 . 𝑸   can thus be 

written as 𝑄𝑖𝑗 = 〈
3

2
𝑢𝑖𝑢𝑗 −

1

2
𝛿𝑖𝑗〉.  

Because 

〈𝑢𝑥𝑢𝑥〉 = 〈𝑢𝑦𝑢𝑦〉 =
1 − 〈𝑐𝑜𝑠2𝜃〉

2
=

1 − 𝑄

3
, 

The tensor matrix of 𝑸 can be represented by Q as 

𝑸 =  

[
 
 
 
 −

𝑄

2
0 0

0 −
𝑄

2
0

0 0 𝑄]
 
 
 
 

. 

The general, Landau-de Gennes expansion of the system free 

energy in powers of 𝑸 is 

𝐹𝑛𝑒𝑚 =
1

3
𝐴𝑇𝑟 (𝑸 ∙ 𝑸) −

4

9
𝐵𝑇𝑟 (𝑸 ∙ 𝑸 ∙ 𝑸)

+
2

9
𝐶𝑇𝑟 (𝑸 ∙ 𝑸 ∙ 𝑸 ∙ 𝑸) + ⋯ 

                  =
1

2
𝐴𝑄2 −

1

3
𝐵𝑄3 +

1

4
𝐶𝑄4 + ⋯ 

When the system achieves thermodynamic equilibrium, the 

free energy should be at a minimum, which requires 

𝜕𝐹𝑛𝑒𝑚

𝜕𝑄
= 0 & 

𝜕2𝐹𝑛𝑒𝑚

𝜕𝑄2
> 0 , 

From which we can obtain the formula of Q with several un-

known parameters: 

𝑄𝑚(𝑇) = {

1

2𝐶
(𝐵 ± √𝐵2 − 4𝐴0(𝑇 − 𝑇𝑠)𝐶) (𝑇 ≤ 𝑇𝑛𝑖)

0 (𝑇 > 𝑇𝑛𝑖)
  , 

In which 𝑇𝑛𝑖  and 𝑇𝑠  are the first- and second-order phase 

transition temperature, respectively. 

We then fit the formula into the experimental data of LCE 

[10], and the result is shown in Figure 4. From the fitted 

curve, we can also calculate some critical values of the mate-

rial, including the phase change temperatures Tni = 360.15K, 

Ts =356.20 K, and phase change nematic order Qni =0.14. 
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Fig. 4 The experimental data (from [10]) and simulation results of the ne-

matic order parameter- temperature relationship. 

2.2.2 Thermal Strain 

We apply two methods to describe the trend of stretch change 

with temperature.  

Method 1: Approximation. We find from the experimental 

data that the nematic order- temperature relationship and rel-

ative length (stretch)- temperature relationship, is quite simi-

lar in shape, and their difference of value is around 1. Based 

on this, we can make the approximation that 𝜆 = L(T)/
𝐿𝑖𝑠𝑜 ≈ 𝑄(𝑇) + 1 to obtain our strain, where 𝐿𝑖𝑠𝑜  represents 

the length of the elastomer at isotropic phase along the direc-

tion of orientation n. The dashed black line in Figure 5a 

shows that the approximated stretch fits well with the exper-

imental data. To further evaluate our approximation, Figure 

5b plots the direct relationship between the stretch and ne-

matic order parameter, and the fitting of the data points ex-

hibits a linear relationship 𝑦 = 0.987𝑥 + 1.014  (dashed 

black line), which is close to our approximation. Due to lim-

ited experimental data access, we cannot determine whether 

this relationship is applicable to other liquid crystalline elas-

tomers; but for the specific nematic material measured in 

[10], the error of the approximation is acceptable. 

 

Fig. 5 (a)(b) Change of natural length of a monodomain nematic elastomer 

with temperature and nematic order parameter, respectively. The experi-

mental data is collected from [10]. The dashed black line represents the 

stretch calculated by the approximation approach. The dashed red line rep-

resents the stretch calculated from the theoretical model.  

The thermal strain, which is the change of length relative to 

the natural length at room temperature, is then calculated ac-

cording to the stretch and applied in our COMSOL simula-

tion. 

Method 2: Freely Jointed Chain Model. Apart from the ap-

proximation of stretch, we also present a theoretical approach 

to calculating the relationship between stretch and nematic 

order parameter. A freely jointed chain model is applied to 

describe the deformation of the polymer chain (As shown in 

Figure 6). The parameters used in the model are listed in Ta-

ble 1. 

 

Fig. 6 Illustration of the freely jointed chain model. The blue ellipses repre-

sent the mesogen, and the red line is the simplified structure of the spacer 

that connects between each mesogen. 

Table 1 Parameters mentioned in the freely jointed chain model 

PARAMETERS DESCRIPTION 

a Natural length of monomer at 

isotropic phase 

l Effective step length 

L Overall arc length 

R End-to-end distance 

N Number of mesogen 

uα The orientation of αth 

mesogen 

r Anisotropy 
 

A few assumptions are made before the derivation. First, we 

consider the LC polymer to be main chain, i.e., each mesogen 

is connected directly to the backbone of the polymer. Second, 

the elastomer formed is incompressible in volume, which is 

a typical characteristic of materials with relatively low shear 

moduli. Third, the LC polymer is in the uniaxial nematic 

phase. In a freely jointed chain model, we also assume that 

the physical properties of the total system depend weakly on 

its detailed structure, which means that the entanglement and 

constraints of the chains are neglected. 

The end to end distance R, which reflects the macroscopic 

shape of the polymer, can be written as 

𝑹 = 𝑎 ∑𝒖𝜶

𝑁

𝑖=1

. 
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The mean square end-to-end vector can thus be described in 

the form of effective step length, which is calculated from 

random walk theory [11].  

⟨𝑹𝒊𝑹𝒋⟩ =
1

3
𝐿𝑙𝑖𝑗 . 

As a result, the effective step length tensor can be written as 

𝒍 =  [

𝑙⊥ 0 0
0 𝑙⊥ 0
0 0 𝑙∥

] =
3

𝑁𝑎
⟨𝑹𝑹⟩ =

3𝑎

𝑁
∑⟨𝒖𝜶𝒖𝜷⟩ = 3𝑎

𝛼,𝛽

⟨𝒖𝒖⟩. 

Apply the same method used to calculate tensor 𝑸 and get 

𝒍 = [

𝑙⊥ 0 0
0 𝑙⊥ 0
0 0 𝑙∥

] = 3𝑎

[
 
 
 
 
〈𝑠𝑖𝑛2𝜃〉

2
0 0

0
〈𝑠𝑖𝑛2𝜃〉

2
0

0 0 〈𝑐𝑜𝑠2𝜃〉]
 
 
 
 

= 𝑎 [
1 − 𝑄 0 0

0 1 − 𝑄 0
0 0 1 + 2𝑄

]. 

As can be seen, the effective step length has a closer relation-

ship with the microscopic nematic order Q. The chain anisot-

ropy is therefore defined to be the ratio of step length parallel 

to the director and that perpendicular to the director, 

𝑟 =
𝑙∥
𝑙⊥

=
1 + 2𝑄

1 − 𝑄
. 

At this point, we have related the step length with the nematic 

order parameter. To further derive the stretch-nematic order 

relation, a Neo-Hookean elasticity model is applied to calcu-

late 𝜆 − 𝑙 relation. When the liquid crystal elastomer is at the 

isotropic phase, it tends to appear spherical with the absence 

of external fields because of symmetry along different orien-

tations. When the temperature decreases, the stretch is going 

to happen along the direction parallel to the director n, while 

in the other two perpendicular orientations the length will 

shrink. The stretch tensor can be described as 

𝜆∥ = 𝜆 =  
𝐿

𝐿0
, 𝜆⊥ =  

1

√𝜆
. 

According to [8], the elastic free energy density of liquid 

crystalline elastomer is a coupling of stretch and step length, 

which can be written in the form of:  

𝐹(𝜆) =
1

2
𝜇𝑇𝑟[𝒍𝟎 ∙ 𝝀𝑻 ∙ 𝒍−𝟏 ∙ 𝝀] =

1

2
𝜇Tr

[
 
 
 
 
 
 

𝑎

𝜆𝑙⊥
0 0

0
𝑎

𝜆𝑙⊥
0

0 0
𝑎𝜆2

𝑙∥ ]
 
 
 
 
 
 

=
1

2
𝜇 (

2𝑎

𝜆𝑙⊥
+

𝑎𝜆2

𝑙∥
), 

In which 𝜇 is the shear modulus of the material, 𝒍𝟎 = 𝑎𝜹𝒊𝒋 is 

the length of mesogen before the deformation, and 𝒍−𝟏 is the 

inverse of the step length tensor during the deformation. 

Similar to the nematic free energy, we let the first derivation 

of 𝐹(𝜆) to be 0 and find 

𝜆𝑚 = (
𝑙∥
𝑙⊥

)

1

3

= (𝑟)
1

3. 

Consequently, the stretch-nematic order parameter relation 

appears to be 

𝜆(𝑄) = (
1 + 2𝑄

1 − 𝑄
)

1

3

. 

The dashed red lines in Figure 5 reflects the performance of 

this model. This model fits well with experimental data at the 

low-Q region but predicts a higher value of stretch at the 

high-Q region. Two factors might contribute to the phenom-

enon. First, in the freely jointed chain model we assumed that 

no constraint is posed to the alignment of the mesogen, but in 

fact at the high-Q region, the spacers and crosslinks will play 

a more important role and thus cannot be neglected. Addi-

tionally, the material tested in [10] is a side-chain polymer, 

in which the chain conformational freedom is affected by the 

linkages to the backbone and the volume fraction of the rods 

in the polymer [12]. 

3. Results & Discussion 

3.1 Key parameters 

In this section, a series of simulation experiments are con-

ducted to explore the relationship between actuator tempera-

ture and performance (flexural rigidity, load capacity, flexi-

bility vs. light power & heat distribution). Specifically, the 

parts of the manipulator composed of 20 to 40 regular hexag-

onal units are created using COMSOL MULTYPHYSICS as 

shown in Figure 7. We set Young's modulus as 750 

kPa,  Poisson’s rate as 0.44, density as 851 kg/m^3, thermal 

conductivity as 0.238 W/(m*K) and heat capacity as 1618 

J/(kg*K) for the liquid crystalline elastomer (LCEs) of the 

frame [13][14].  
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As shown in Figure 7, a fixed constraint is applied on one 

side of the arm which is called fixed end. Correspondingly, 

the other end of the arm is called the free end. The total length 

and width of the arm are 66 mm and 14 mm respectively. The 

thickness of the arm is from 0.5 mm to 5 mm. It depends on 

the limitation of the existing LCE 3D printing technology, 

which is relatively difficult to print thick LCE structure. But 

in our simulation, we partially ignore this limitation to ex-

plore the potential of this design. 

 
Fig. 7 Sketch of the honeycomb arm and geometric constraint relationship 

3.2 Flexibility 

We use two criterions to characterize the flexibility of the 

LCE actuator, the displacement of the yellow point at the free 

end as the tip displacement and the angle transition of the 

LCE actuator calculated by the coordinates of the red point 

and the yellow point as the tip displacement. Sketch of test 

settings are shown in Figure 8.    

 

 

Fig. 8 settings for deformation test 

Deformation of the actuator and distribution of temperatures 

are shown in Figure 9. 

The statistic results are shown in Figure 10(a) and Figure 

10(b). Both curves are linear at beginning. They transit to 

nonlinear phases right after the excitation reaches 1 W and 

then saturate quickly at roughly 120 degrees and 40 mm after 

1.25 W excitation. The non-linear effects are believed to most 

be the result of the non-linear phenomenon of the relative 

length and temperature characteristic of LCE. 

 

 

Fig. 9 The left figure column indicates the deformation under heating power 
of 0.5W, 1.0W, and 2.0W from (a) to (c) respectively. The right figure shows 
the corresponding temperature distribution. 

 

Fig. 10 (a) Tip angle vs. laser power (b) Tip displacement vs. laser power 

3.3 Flexural Rigidity 

The flexural rigidity is characterized by a test where the LCE 

actuator is fixed at both side and force load is applied at the 

center of the LCE actuator as shown in Fig. 11 and Figure 12. 

For a beam structure, the flexural rigidity is just 𝐸𝐼, where E 
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is the Young’s modulus and I is the second moment of inertia. 

In this case, it is not appropriate to consider the LCE actuator 

as a beam given the elasticity and honeycomb structure it has. 

Therefore, we conduct a modified three-point test and use the 

displacement of the center to characterize the flexural rigidity. 

In this experiment, we set the thickness of the actuator in z 

direction as 0.5 mm.  

 

Fig. 11 Flexural rigidity test setup in y axis. The left and right ends of the 

actuator are fixed. Force is applied as shown in the figure. No heat excita-

tion is applied to the actuator.  

 

Fig. 12 Flexural rigidity test setup in z axis. The left and right ends of the 

actuator are fixed. Force is applied as shown in the figure. No heat excita-

tion is applied to the actuator. 

The results are shown in Figure 13(a) and Figure 13(b) The 

curve of deflection vs. force load in y direction is near linear. 

The force load reaches almost 10mN when the deformation 

comes to 4 mm. Consider that the self-weight of the LCE ac-

tuator is 0.12 mg, the force load at the end of the curve is 

nearly 10 times of its self-weight load. The average deflection 

to force load ratio is 5.15 m/N. 

On the contrast, the curve for z direction has significant non-

linear effect. Given the same force load, the deflection in z 

direction is also remarkably smaller than the one in y direc-

tion. The average deflection to force load ratio is 77.36 m/N.  

To summarize, the flexural rigidity in y direction is higher 

than the flexural rigidity in z direction. The reason can be the 

lack of thickness in z direction. In fabrication, achieving large 

thickness in z direction is still a challenging work.  

 

Fig. 13 (a) Flexural rigidity in y direction; (b) Flexural rigidity in z 

direction.  

3.4 Load Capacity 

There are several ways to achieve the condition that the tip 

and the fixed end of the manipulator are on the same height 

under a load. Here we choose the evaluation method shown 

in Figure 14. All the lines of LCE are heated to 370 K on 

the higher side and its load increases until the two ends 

reach the same height. F represents the external load. The 

honeycomb arm moves in a horizontal plane. The simula-

tion result shows that load capacity of the arm is about four 

times its own weight. As shown in Figure 15, the load ca-

pacity is proportional to arm thickness. Therefore, we ex-

pect that when the thickness of the arm reaches the same or-

der of magnitude (centimeter-level) as the width of the arm, 

not only its load capacity can be improved by nearly a hun-

dred times, but its ability to resist undesired twisting and 

buckling will also be greatly improved. 

 

Fig. 14 Sketch of the principle of measuring the load capacity of the honey-
comb arm.  
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Fig. 15 Load capacity of arm at different thickness 

 

3.5 Structural deformation vs. Light (heat) distribu-

tion  

The proposed honeycomb topology is supposed to achieve 

multiple configurations by varying the heating region (illu-

minated region) upon the LCE. As depicted in Figure 16, 

since the designed soft arm bends towards the direction of the 

heating region, we can manipulate its overall in-plane bend-

ing behavior by controlling the side of the heating region (top 

or bottom). With proper illumination distribution, the soft 

arm can reach curved shape (Figures 16a and 16c), S-shape 

(Figure 16b), and a wavelike shape (Figure 16d).  

4. Conclusion & Future work 

In this project, we propose and study a light responsive LCE 

soft arm with the honeycomb topology. We firstly establish a 

theoretical relationship between the shrinking and the tem-

perature, then we simulate the light-induced mechanical be-

havior of the LCE soft arm based on the aforementioned as-

sumptions and simplifications, and finally we systematically 

evaluate the soft arm’s performance from different perspec-

tives. We explore the potential application values of the hon-

eycomb topology based LCE actuator system in advance of 

experimental verification, aiming to providing insights into 

the honeycomb LCE design. 

This project has a huge room for improvement. We summa-

rize the future work into four aspects: 

Simulation. Since LCE is a typical viscoelastic material, we 

may consider its viscoelasticity and damping behavior in the 

future and include them into the simulation model. We may 

include the inhomogeneous light intensity distribution into 

the simulation, especially the light decaying along with the 

thickness direction, which may result in shrinking strain gra-

dient perpendicular to the design plane. We may also explore 

transient simulations, regarding the material property and the 

heat transmission process as functions of time.  

Theoretical modeling. Based on the established relationship 

between the nematic order, the temperature and the shrinking 

strain, we may further derive the relationship between the lo-

cal shrinkage and the arm’s total bending deflection.  

Design. In the future, we may include more geometric pat-

terns into our soft arm design, i.e. triangles, squares, and oc-

tagons. A more complex topology may achieve more de-

formed configurations and further carry more functionalities.  

Experimental implementation. We may develop this project 

with accurate material characterization of LCE. We can im-

prove the fabrication technique and LCE recipe to generate 

more stable and robust printing of large structures. We may 

explore possible dyes for LCE so as to achieve efficient light-

to-heat energy conversion. If the size of the designed soft arm 

is large enough, we may integrate optical fibers into it to 

achieve precise deformation control by accurately delivering 

the light to each single hexagon edge.  

 

Fig. 16 Deformed patterns with different heating regions (illuminated edges 

distribution). The left column indicates the stress distribution on the de-

formed structure, and the right column indicates the temperature distribution 

under corresponding illumination. The heating regions are: (a) all top edges; 

(b) 1/2 top edges (top left) + 1/2 bottom edges (bottom right); (c) 1/4 top 

edges (top left) + 3/4 bottom edges (bottom right); (4) 1/4 top edges (top left) 

+ 1/2 bottom edges (bottom middle) + 1/4 top edges (top right), respectively.  
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